Simple Algebra and Special Relativity

Consider just two quantities, x^{\prime}, the distance an object has traveled, and I, the distance a light flash has traveled during the same time t at speed c. We will assume that they both started out at $x=0$. Let's play with these.

Let $x^{\prime 2}+I^{2}=H^{\prime 2} ; \quad I^{2}=H^{\prime 2}-x^{\prime 2} ; \quad I^{2} / t^{2}=H^{\prime 2} / t^{2}-x^{\prime 2} / t^{2}$ Let $x^{\prime}>0 ; I>0$. Therefore, $H^{\prime}>I$

NM

Let $\quad c=I / t ; \quad c^{\prime}=H^{\prime} / t$

$$
c=I / t ; \quad c^{\prime}=H^{\prime} / t
$$

$$
H^{\prime}>[c t=I]
$$

$$
\text { Let } \boldsymbol{t}^{\prime}=\boldsymbol{H}^{\prime} / \boldsymbol{c}
$$

Therefore,

$$
I=c t ; \quad \boldsymbol{H}^{\prime}=\boldsymbol{c}^{\prime} \boldsymbol{t}
$$

SRT $\quad I^{2}=\left(c t^{\prime}\right)^{2}-x^{\prime 2}$
Because $H^{\prime}>I$,

$$
c^{\prime}>c
$$

NM $\quad I^{2}=\left(c^{\prime} t\right)^{2}-x^{\prime 2}$
Let $\quad V=x^{\prime} / t$
$x^{\prime}=\left(x^{\prime} / t\right) t=V t=(V / c) c t=(V / c) I$
SRT

$$
H^{\prime 2}=\left(c t^{\prime}\right)^{2}
$$

Let $\gamma=\left(H^{\prime} / I\right)=\left(c t^{\prime} / c t\right)$ [see below]
Let $v=\left(x^{\prime} / t^{\prime}\right)$
$x^{\prime}=\left(c t^{\prime} / c t\right)\left(x^{\prime} / c t^{\prime}\right) c t$
$=\gamma(\nu / c) c t=\gamma \nu t$
$t^{\prime}=\left(c t^{\prime} / c t\right) t=\gamma t$
$x^{\prime}=V t=\gamma v t=\gamma(v / c) c t=\gamma(v / c) I$ $V=\gamma \nu$

$$
\begin{aligned}
\gamma^{2}=\left(c t^{\prime}\right)^{2} / I^{2} & =\left(H^{\prime} / I\right)^{2}=H^{\prime 2} /\left(H^{\prime 2}-x^{\prime 2}\right)=1 / 1-\left(x^{\prime} / H^{\prime}\right)^{2} \\
& =1 / 1-\left(x^{\prime} / c t^{\prime}\right)^{2}=\mathbf{1} / \mathbf{-}-(v / c)^{2} \\
\gamma= & {\left[1 /\left(1-(v / c)^{2}\right)\right]^{1 / 2}=\left(H^{\prime} / I\right)=\left(c t^{\prime}\right) / I }
\end{aligned}
$$

The $\gamma \mathrm{x}$ and $\gamma\left(\mathrm{v} / \mathrm{c}^{2}\right) \mathrm{x}$ of the full SRT transformation equations are readily derivable from the Relativistic Interval equation.

