Simple Algebra and Special Relativity

Consider just two quantities, x', the distance an object has traveled, and I, the distance a light flash has traveled during the same time t at speed c. We will assume that they both started out at x=0. Let's play with these.

Let $x'^2 + I^2 = H'^2$; $I^2 = H'^2 - x'^2$; $I^2/t^2 = H'^2/t^2 - x'^2/t^2$ Let x' > 0; I > 0. Therefore, H' > I

NM

Let c=I/t; c'=H'/t

Therefore,

I=ct; H'=c't

Because H' > I, c' > c

NM $I^2 = (c't)^2 - x'^2$

Let
$$V = x'/t$$

x' = (x'/t)t = Vt = (V/c)ct = (V/c)I

$$H' > [ct = I]$$

 $Let \ t' = H'/c$
 $H'^2 = (ct')^2$
SRT $I^2 = (ct')^2 - x'^2$

SRT

Let $\gamma = (H'/I) = (ct'/ct)$ [see below]

Let v = (x'/t')

$$x' = (ct'/ct)(x'/ct')ct$$

= $\gamma(v/c)ct = \gamma vt$

$$t' = (ct'/ct)t = \gamma t$$

$$x' = Vt = \gamma vt = \gamma(v/c)ct = \gamma(v/c)I$$
$$V = \gamma v$$

$$\gamma^{2} = (ct')^{2}/I^{2} = (H'/I)^{2} = H'^{2}/(H'^{2}-x'^{2}) = 1/1 - (x'/H')^{2}$$

= 1/1-(x'/ct')^{2} = 1/1-(v/c)^{2}
$$\gamma = [1/(1-(v/c)^{2})]^{\frac{1}{2}} = (H'/I) = (ct')/I$$

The γx and $\gamma (v/c^2) x$ of the full SRT transformation equations are readily derivable from the Relativistic Interval equation.